3,211 research outputs found

    Inventory of aquatic contaminant flux arising from historical metal mining in England and Wales

    Get PDF
    The impact of discharges from abandoned metal and ironstone mines has been a much studied form of aquatic pollution in recent decades. Few attempts however, have been made to accurately determine the overall contaminant mass flux arising from abandoned mine sites at scales above catchment level. Such assessments are critical to determine the significance of former mining to national, regional and ultimately global trace metal flux. This paper presents the most comprehensive national survey to date across England and Wales of the total pollution burden discharged at source from abandoned non-coal mine sites. 338 discharges have been identified (from 4923 known abandoned metal mines) and while concurrent flow and contaminant concentration records are only available for around 30% of these, significant quantities of metals (and As) have been quantified to be discharged. A minimum of 193 tonnes of Zn, 18.5 tonnes of Pb, 0.64 tonnes Cd, 19.1 tonnes of Cu, 551 tonnes Fe, 72 tonnes Mn and 5.1 tonnes As are released in water discharges from abandoned non-coal mines to the surface water environment of England and Wales each year. Precautionary extrapolation of mass fluxes based on the frequency distribution of measured concentration and flow data, for discharges with absent data, suggests that the actual total mass flux for these contaminants could be up to 41% higher. The mass flux of Pb released from mines exceeds that of all currently permitted discharges (e.g. active industrial sites and wastewater treatment works) to surface waters across England and Wales, while those of As, Cd and Zn are of a similar magnitude. These data put into context the enduring legacy of historic mining on the water environment, highlighting its significance relative to more highly regulated polluting sites. Comparison of the figures with estimates of global trace metal flux suggests that the national total identified here is significant on a global scale

    Analisis Produk Domestik Bruto (PDB), Suku Bunga Bi (Bi Rate), Dan Inflasi Terhadap Investasi Asing Langsung (PMA) Di Indonesia Tahun 2006-2015

    Full text link
    This study aims to determine the effect of the gross domestic product, the BI rate, and inflation on Foreign Direct Investment in Indonesia 2006-2015. The study consists of three independent variables (gross domestic product, the BI rate, and inflation) and one dependent variable (foreign direct investment). Foreign direct investment is the International flow of capital from a country where the company is establishing or expanding a company in another country. The data used are annual data from 2006-2015. The analytical method used is multiple linear regression using SPSS version 20.0. The research results obtained are GDP, BI rate, and inflation together (simultaneously) the effect on foreign direct investment with significance level of 5%. Partially BI rate has a negative effect on foreign direct investment, while the variable GDP and inflation partially positive effect on foreign direct investment. Variation factors that influence foreign direct investment is explained by GDP, the BI rate, and inflation together influential amounted to 98.0% (R2 = 0.98), while the remaining 2.0% is explained by other variables not included in this research. Between the three variables (GDP, BI rate, and inflation), the variable GDP and inflation have a significant effect on foreign direct investment

    Vanadium removal and recovery from bauxite residue leachates by ion exchange

    Get PDF
    Bauxite residue is an important by-product of the alumina industry, and current management practices do not allow their full valorisation, especially with regard to the recovery of critical metals. This work aims to test the efficiency of ion exchange resins for vanadium (V) removal and recovery from bauxite residue leachates at alkaline pH (11.5 and 13). As an environmental pollutant, removal of V from leachates may be an obligation of bauxite residue disposal areas (BRDA) long-term management requirements. Vanadium removal from the leachate can be coupled with the recovery, and potentially can be used to offset long-term legacy treatment costs in legacy sites. Kinetics studies were performed to understand the adsorption process. The rate kinetics for the V adsorption was consistent with the pseudo-first-order kinetic model, with a higher adsorption rate for pH 11.5 (1.2 min(-1)). Adsorption isotherm data fitted better to Freundlich equations than to the Langmuir model. The maximum adsorption capacity (Langmuir value q max) was greatest for pH 13 (9.8 mg V g(-1) resin). In column tests, breakthrough was reached at 70 bed volumes with the red mud leachate at pH 13, while no breakthrough was achieved with the effluent at pH 11.5. In regeneration, 42 and 76 % of V were eluted from the resin with 2 M NaOH from the red mud leachate at pH 13 and 11.5, respectively. Further optimization will be needed to upscale the treatment

    Are infestations of Cymomelanodactylus killing Acropora cytherea in the Chagos archipelago?

    Get PDF
    Associations between branching corals and infaunal crabs are well known, mostly due to the beneficial effects of Trapezia and Tetralia crabs in protecting host corals from crown-of-thorns starfish (e.g., Pratchett et al. 2000) and/or sedimentation (Stewart et al. 2006). These crabs are obligate associates of live corals and highly prevalent across suitable coral hosts, with 1–2 individuals per colony (Patton 1994). Cymo melanodactylus (Fig. 1) are also prevalent in branching corals, mostly Acropora, and are known to feed on live coral tissue, but are generally found in low abundance (<3 per colony) and do not significantly affect their host corals (e.g., Patton 1994). In the Chagos archipelago, however, infestations of Cymo melanodactylus were found on recently dead and dying colonies of Acropora cytherea

    Using assignment data to analyse a blended information literacy intervention: a quantitative approach

    Get PDF
    This research sought to determine whether a blended information literacy learning and teaching intervention could statistically significantly enhance undergraduates’ information discernment compared to standard face-to-face delivery. A mixture of face-to-face and online activities, including online social media learning, was used. Three interventions were designed to develop the information literacies of first-year undergraduates studying Sport and Exercise at Staffordshire University and focused on one aspect of information literacy: the ability to evaluate source material effectively. An analysis was devised where written evaluations of found information for an assessment were converted into numerical scores and then measured statistically. This helped to evaluate the efficacy of the interventions and provided data for further analysis. An insight into how the information literacy pedagogical intervention and the cognitive processes involved in enabling participants to interact critically with information is provided. The intervention which incorporated social media learning proved to be the most successful learning and teaching approach. The data indicated that undergraduate students’ information literacy can be developed. However, additional long-term data is required to establish whether this intervention would have a lasting impact

    Response patterns of simulated corn yield and soil nitrous oxide emission to precipitation change

    Get PDF
    Background Precipitation plays an important role in crop production and soil greenhouse gas emissions. However, how crop yield and soil nitrous oxide (N2O) emission respond to precipitation change, particularly with different background precipitations (dry, normal, and wet years), has not been well investigated. In this study, we examined the impacts of precipitation changes on corn yield and soil N2O emission using a long-term (1981–2020, 40 years) climate dataset as well as seven manipulated precipitation treatments with different background precipitations using the DeNitrification-DeComposition (DNDC) model. Results Results showed large variations of corn yield and precipitation but small variation of soil N2O emission among 40 years. Both corn yield and soil N2O emission showed near linear relationships with precipitation based on the long-term precipitation data, but with different response patters of corn yield and soil N2O emission to precipitation manipulations. Corn yield showed a positive linear response to precipitation manipulations in the dry year, but no response to increases in precipitation in the normal year, and a trend of decrease in the wet year. The extreme drought treatments reduced corn yield sharply in both normal and wet years. In contrast, soil N2O emission mostly responded linearly to precipitation manipulations. Decreases in precipitation in the dry year reduced more soil N2O emission than those in the normal and wet years, while increases in precipitation increased more soil N2O emission in the normal and wet years than in the dry year. Conclusions This study revealed different response patterns of corn yield and soil N2O emission to precipitation and highlights that mitigation strategy for soil N2O emission reduction should consider different background climate conditions

    The structure of gravel-bed flow with intermediate submergence: a laboratory study

    Get PDF
    The paper reports an experimental study of the flow structure over an immobile gravel bed in open channel at intermediate submergence, with particular focus on the near-bed region. The experiments consisted of velocity measurements using three-component (stereoscopic) Particle Image Velocimetry (PIV) in near-bed horizontal plane and two-component PIV in three vertical planes that covered three distinctly different hydraulic scenarios where the ratio of flow depth to roughness height (i.e., relative submergence) changes from 7.5 to 10.8. Detailed velocity measurements were supplemented with fine-scale bed elevation data obtained with a laser scanner. The data revealed longitudinal low-momentum and high-momentum "strips'' in the time-averaged velocity field, likely induced by secondary currents. This depth-scale pattern was superimposed with particle-scale patches of flow heterogeneity induced by gravel particle protrusions. A similar picture emerged when considering second-order velocity moments. The interaction between the flow field and gravel-bed protrusions is assessed using cross correlations of velocity components and bed elevations in a horizontal plane just above gravel particle crests. The cross correlations suggest that upward and downward fluid motions are mainly associated with upstream-facing and lee sides of particles, respectively. Results also show that the relative submergence affects the turbulence intensity profiles for vertical velocity over the whole flow depth, while only a weak effect, limited to the near-bed region, is noticed for streamwise velocity component. The approximation of mean velocity profiles with a logarithmic formula reveals that log-profile parameters depend on relative submergence, highlighting inapplicability of a conventional "universal'' logarithmic law for gravel-bed flows with intermediate submergence
    • …
    corecore